
Towards Revenue-Driven Multi-User Online
Task Offloading in Edge Computing
Zhi Ma, Sheng Zhang ,Member, IEEE, Zhiqi Chen, Tao Han,Member, IEEE,

Zhuzhong Qian ,Member, IEEE, Mingjun Xiao ,Member, IEEE, Ning Chen ,

Jie Wu , Fellow, IEEE, and Sanglu Lu,Member, IEEE

Abstract—Mobile Edge Computing (MEC) has become an attractive solution to enhance the computing and storage capacity of mobile

devices by leveraging available resources on edge nodes. In MEC, the arrivals of tasks are highly dynamic and are hard to predict

precisely. It is of great importance yet very challenging to assign the tasks to edge nodes with guaranteed system performance. In this

article, we aim to optimize the revenue earned by each edge node by optimally offloading tasks to the edge nodes. We formulate the

revenue-driven online task offloading (ROTO) problem, which is proved to be NP-hard. We first relax ROTO to a linear fractional

programming problem, for which we propose the Level Balanced Allocation (LBA) algorithm. We then show the performance guarantee

of LBA through rigorous theoretical analysis, and present the LB-Rounding algorithm for ROTO using the primal-dual technique. The

algorithm achieves an approximation ratio of 2ð1þ �Þ lnðdþ 1Þ with a considerable probability, where d is the maximum number of

process slots of an edge node and � is a small constant. The performance of the proposed algorithm is validated through both trace-

driven simulations and testbed experiments. Results show that our proposed scheme is more efficient compared to baseline

algorithms.

Index Terms—Mobile edge computing, primal-dual technique, online computation offloading, revenue-optimal

Ç

1 INTRODUCTION

NOWADAYS, pervasive mobile computing and the Internet
of Things are driving the development of many new

compute-intensive and latency-sensitive applications, such
as mobile gaming and virtual/augmented reality (VR/AR),
and massive data will be generated at the edge of networks.
However, many devices, such as smartphones and wearable
devices, have a limited processing capacity and may not be
able to process their data. Due to network bandwidth,
storage and data privacy concerns, it is also impractical,
and often unnecessary, to send all of the data to a remote
cloud. Fortunately, Mobile-Edge Computing (MEC) has
been gaining strong momentum as an emerging paradigm
that provides cloud computing-like capabilities including
computing and storage resources, at the edge of wireless

access networks. Although MEC is less powerful than a
remote cloud [1], [2], the transmission latency between
a user and a mobile edge cloud is much lower than that of
the remote cloud as it is located at the network edge.

In a real-world task-offloading scenario, the arrivals of
users are dynamic and the tasks must be processed quickly.
This motivates us to consider the online scenario where
users arrive dynamically, and resources are allocated based
on only the past offloading decisions and current states of
the edge nodes. Therefore, making correct decisions when
the task arrivals are uncertain is challenging. Meanwhile,
with the increasing complexity of applications and wireless
networks, the scale of the dynamic offloading problem is an
enormous obstacle [3].

To tackle this issue, Li et al. [4] proposed an online com-
putation rate maximization algorithm using the Lyapunov
method for a multi-user MEC system by jointly managing
the radio and computational resources and allocating time
for energy transfer and data transmission; Chen et al. [5] for-
mulated a multi-user multi-task computation offloading
problem for green MEC and used the Lyapunov optimiza-
tion approach to determine the energy harvesting policy.
Although the Lyapunov optimization is often used to deal
with online problems, it takes time to converge, and cannot
fully adapt to bursts of task requests in a short time. Some
other studies chose to use deep learning or deep Q-network
(DQN) methods [6], [7], [8], [9], [10], [11], [12], which require
training in advance and have no explicit theoretical perfor-
mance guarantees.

Meanwhile, these studies mainly focused on the energy-
efficient and resource-efficient computational service off-
loading scheme in MEC. Only a few works have considered

� Zhi Ma, Sheng Zhang, Zhiqi Chen, Zhuzhong Qian, Ning Chen, and San-
glu Lu are with the State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, Jiangsu 210023, China.
E-mail: marszer@foxmail.com, {sheng, qzz, sanglu}@nju.edu.cn,
csczq123456@gmail.com, ningc@smail.nju.edu.cn.

� Tao Han is with the Department of the Electrical and Computer Engineer-
ing, University of New Jersey Institute of Technology, Newark, NJ 07102
USA. E-mail: Tao.Han@uncc.edu.

� Mingjun Xiao is with the School of Computer Science and Technology /
Suzhou Institute for Advanced Study, University of Science and Technol-
ogy of China, Hefei, Anhui 230052, China. E-mail: xiaomj@ustc.edu.cn.

� Jie Wu is with the Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122 USA. E-mail: jiewu@temple.
edu.

Manuscript received 26 Jan. 2021; revised 6 Aug. 2021; accepted 11 Aug. 2021.
Date of publication 18 Aug. 2021; date of current version 15 Oct. 2021.
(Corresponding author: Sheng Zhang.)
Recommended for acceptance by D. Talia.
Digital Object Identifier no. 10.1109/TPDS.2021.3105325

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022 1185

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6581-6399
https://orcid.org/0000-0002-6581-6399
https://orcid.org/0000-0002-6581-6399
https://orcid.org/0000-0002-6581-6399
https://orcid.org/0000-0002-6581-6399
https://orcid.org/0000-0003-1625-7575
https://orcid.org/0000-0003-1625-7575
https://orcid.org/0000-0003-1625-7575
https://orcid.org/0000-0003-1625-7575
https://orcid.org/0000-0003-1625-7575
https://orcid.org/0000-0001-7852-0282
https://orcid.org/0000-0001-7852-0282
https://orcid.org/0000-0001-7852-0282
https://orcid.org/0000-0001-7852-0282
https://orcid.org/0000-0001-7852-0282
https://orcid.org/0000-0003-0722-1757
https://orcid.org/0000-0003-0722-1757
https://orcid.org/0000-0003-0722-1757
https://orcid.org/0000-0003-0722-1757
https://orcid.org/0000-0003-0722-1757
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
mailto:marszer@foxmail.com
mailto:sheng@nju.edu.cn
mailto:qzz@nju.edu.cn
mailto:sanglu@nju.edu.cn
mailto:csczq123456@gmail.com
mailto:ningc@smail.nju.edu.cn
mailto:Tao.Han@uncc.edu
mailto:xiaomj@ustc.edu.cn
mailto:jiewu@temple.edu
mailto:jiewu@temple.edu


the revenue maximization problem in task offloading [13],
[14], [15], [16], and these works have considered either the
edge offline scenario or cloud-edge competition scenario.

Service providers such as Amazon and Alibaba have
deployed many edge nodes and built their own edge node
server platforms, which can provide the computing power
of content delivery network (CDN) edge nodes (ENS [17]
and Lambda@edge[18]). Enterprises or individuals can rent
their edge nodes by paying on demand or on time. In this
work, we study the revenue-driven online task offloading
(ROTO) problem in MEC. Specifically, we focus on offload-
ing multiple computation intensive tasks to a set of edge
nodes, and the objective is to maximize the revenue of edge
nodes from the perspective of service providers. Fig. 1 illus-
trates a typical offloading scenario in which a set of edge
nodes constitute a mobile edge cloud. Generally, edge node
services are constructed based on the operator’s network
and the task offloading is done by the Base Stations (BS) of
the operators. We assume that the service provider can
obtain the information of the BS and control some functions
of the BS through software define network (SDN). Users can
offload their tasks to the edge nodes to extend their own
computing ability via paying for task execution. Moreover,
a user can offload its task only to edge nodes if the user and
edge nodes are within the communication range of the
same BS. A user first sends its task to the nearby BS, then
the BS decides how to offload the task to the edge nodes
within its communication range according to the revenue,
computing demand of the task, and states of the edge nodes.

We first formulate the ROTO problem into an integer lin-
ear programming problem, then we prove that ROTO is
NP-complete by reducing the multi-dimensional knapsack
problem to it. To solve it, we first relax it to a linear frac-
tional programming problem, i.e., ROTO-LP. We then pres-
ent two important notions, level and move-up energy, that
enable us to design an efficient algorithm, named level bal-
anced allocation (LBA). By intelligently constructing a
potential function and using the primal-dual schema, we
prove that LBA can achieve an approximation ratio of 2ð1þ
�Þ lnðdþ 1Þ, in which d is the maximum number of the pro-
cess slots of an edge node. Based on the intuitions obtained
from designing LBA for ROTO-LP, we finally propose the
level balanced rounding (LBR) algorithm for ROTO by com-
bining LBA and the rounding technique. Using the Chernoff
bound and probability analysis, we prove LBR can achieve
the same approximation ratio as LBA with a high probabil-
ity, i.e., at least 1� e�sn, where n is the number of users. We
implemented LBR on our testbed consisting of 8 Raspberry

Pis and 4 mobile phones. Trace-driven simulations and
testbed experiments reveal the effectiveness of LBR.

Our main contributions are summarized as follows:

� We develop a multi-user computation offloading
framework for a mobile edge computing system to
maximize the total revenue. We provide a formal for-
mulation of the revenue-driven online task offload-
ing (ROTO) problem, which proved to be NP-
complete.

� We design the Level Balanced Allocation (LBA) algo-
rithm to solve ROTO-LP, which achieves an approxi-
mation ratio of 2ð1þ �Þ lnðdþ 1Þ.

� Based on LBA, we propose the Level Balanced
Rounding (LBR) algorithm and obtain the solution
of ROTO. We prove that LBR achieves an approxi-
mation ratio of 2ð1þ �Þ lnðdþ 1Þ with a probability
of at least 1� e�sn.

� We conduct trace-driven simulations and testbed
experiments to evaluate the performance of the pro-
posed algorithm. The results are shown from differ-
ent perspectives to provide conclusions.

The rest of the paper is organized as follows. Prior works
are reviewed in Section 2. The system model is discussed
and the offloading problem is formulated in Section 3. The
proof of the ROTO NP-hardness is also explained in Sec-
tion 3. The online algorithm to provide maximum revenue
is proposed and analyzed in Section 4. Simulation results
and testbed experiments are investigated in Sections 5
and 6, respectively. In Section 7, we conclude the paper.

2 RELATED WORK

In this section, we give a brief overview about some related
works in regards to task offloading in mobile edge
computing.

First of all, task offloading is divided into two categories
according to whether there are dependencies between tasks.
The problem of offloading dependent tasks in MEC is com-
plicated thus most of works will make many assumptions.
Kao et al. [19] concerned a dependent task assignment prob-
lem over multiple devices. However, they did not impose
restrictions on the capacity of the devices, which makes
their algorithm more inclined to offload the tasks on a few
devices with more capable devices. GenDoc [20] jointly con-
sidered the problem of dependent task offloading and ser-
vice caching placement with the objective of application
completion time minimization. However, GenDoc does not
consider the computing capacities when offloading tasks to
edge nodes. In fact, mobile edge nodes are resource-sensi-
tive and GenDoc may cause irrational use of limited com-
puting resources. In the field of offloading independent
tasks, Jo�silon et al. [21] used game theory to coordinate off-
loading various task requests from multi-user to the mobile
edge cloud. Zhu et al. [22] investigated the task offloading
problem in wireless powered mobile edge computing.
Zhao et al. and Ma et al. [23], [24] considered the factor of
service caching when offloading tasks. Chen et al. [25] lever-
aged the idea of software defined network, and investigated
the task offloading problem in ultra-dense networks. Tao
et al. and Jo�silo et al. [26], [27] focused on task offloading of

Fig. 1. System illustration. Multiple edge nodes constitute a mobile edge
cloud. We aim to optimize the revenue earned by the edge nodes.

1186 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 



autonomous devices. In this paper, we focus on offloading
the independent tasks in MEC.

The above works considered offline scenarios only, that
is, the arrival of all tasks is known in advance. However, to
further enhance the agility of the mobile edge cloud, an
online algorithm is more preferred. When considering
online offloading scenarios, most studies chose to use deep
learning [6], [7] or reinforcement learning methods [9], [10],
[11] for different objectives such as maximizing the
weighted sum computation rate [9], minimizing the energy
consumption [6] and minimizing the running cost [7], [10],
[11]. However, these works require training in advance and
have no explicit theoretical performance guarantee. In addi-
tion to machine learning-related methods, Lyapunov opti-
mization approach is often applied to analyze the online
offloading. Chen et al. [5] discussed multi-user multi-task
offloading scheduling schemes in a renewable mobile edge
cloud system, and used Lyaponov optimization approach
to determine the energy harvesting policy. Ning et al. [28]
comprehensively consider both of MEC and could comput-
ing and design an iterative heuristic algorithm to minimize
the offloading delay. Guo et al. [29] investigated the problem
of collaborative mobile-edge computation offloading in 5G
HetNets and proposed a game-theoretical computation off-
loading scheme. However, these studies mainly focused on
the energy-efficient and resource-efficient computation off-
loading scheme in MEC. Different from theirs, we consider
how to maximize the benefits of edge nodes from the per-
spective of service providers. In additional, Lyapunov
method takes time to converge, and cannot fully adapt to
bursts of task requests in a short time. We use the primal-
dual theory instead of deep learning or Lyapunov’s theorem
to solve the problem. What’s more, in solving this problem,
we propose our algorithm with theoretical guarantees.

3 MODEL AND PROBLEM FORMULATION

In this section, we first elaborate the computation task
model and edge node execution model. Then we formulate
task computation offloading as an optimization problem to
maximize offloading revenue. The goal of the optimization
is to determine the optimal edge nodes to offload tasks for
users based on the arrival of users and their resource
requirements. For ease of presentation, we only consider
the CPU resource. Other type of resources such as memory
usage or disk I/O cycles can be similarly addressed [19],
[30]. After that, we provide the proof of the ROTO NP-
hardness.

3.1 Computation Task Model

Consider a time horizon T, which for simplicity is taken to
be discrete but can be extended to be continuous. We
assume that there are n independent users that need to off-
load their tasks to edge nodes, where the set of users is
denoted as U ¼ fu1; u2; . . . ; ung. The task of user ui is char-
acterized by a set of parameters, fSi;bi; T

arr
i ; T ddl

i ;ai1

; . . . ;aij; . . . ;aimg, in which Si denotes the input data size (in
byte); bi denotes the number of CPU cycles required to pro-
cess one byte of data [31]; Tarr

i and Tddl
i represent the arrival

time and deadline of the task, respectively; aij represents
the ratio between the revenue that edge node ej can get and

the computing demand of ui [5], [32]. Note that, if ej and ui

are not within the communication range of the same BS, we
set aij as zero.

Considering the rapid development of 5G networks and
short distance between users and edge nodes, we assume
that the time of data transmission between a user and an
edge node is small enough to be ignored [33]. Thus, the
required computing demand (CPU cycles per second) of ui

is equal to ðbi � SiÞ=ðTddl
i � Tarr

i Þ, which is denoted as bi.
Based on this, we define the revenue that edge node ej can
get if the task of ui is offloaded to ej as aijbi.

According to our survey, the price paid by the user is based
on the computation resource used, service type and service
time slot [34], [35], [36]. We focus on compute intensive tasks,
which means the service types of all tasks are the same. And
the price for running the same task on different edge nodes
will not vary greatly. Thuswe can assume thatmaxej2CðiÞaij �
ð1þ �Þminej2CðiÞaij, where � is a small constant andCðiÞ is the
set of edge nodes that can provide servers to ui.

In this paper, we focus on the scenarios in which the
mobile device has very limited computational resources,
and hence all the tasks should be offloaded to edge nodes
for execution. The task of each user is atomic and cannot be
further divided, and one task is assumed to be offloaded to
only one edge node.

3.2 Edge Node Execution Model

We assume that there are m independent edge nodes that
can provide computing service for users, where the set of
edge nodes is denoted as E ¼ fe1; e2; . . . ; emg. Edge node ej
has Vj process slots, which means ej can process at most Vj

tasks at the same time, and these process slots share the
entire computing capacity. Denote yij as a binary indictor:
yij ¼ 1 if the task of ui is offloaded to edge node ej and yij ¼
0 otherwise. Hence

8 ej 2 E :
Xn
i¼1

yij � Vj; (1)

8 ui 2 U; ej 2 E : yij 2 f0; 1g: (2)

A user can connect to an edge node if the user and edge
node are within the communication range of the same BS.
Denote CðiÞ as the set of edge nodes that are within the
communication range of the same BS as ui. To meet the task
offloading feasibility constraints, it requires

8 ui 2 U :
X

ej2CðiÞ
yij � 1; (3)

8 ui 2 U; ej =2 CðiÞ : yij ¼ 0: (4)

Denoting the computing capacity of edge node ej as Bj

(CPU cycles per second). An edge node cannot provide
computing resources that exceed its capacity. Hence

8 ej 2 E:
Xn
i¼1

biyij � Bj: (5)

In this paper we assume that the computing demand bi is
not less than minej2CðiÞBj=Vj. This assumption is reasonable,

MA ET AL.: TOWARDS REVENUE-DRIVEN MULTI-USER ONLINE TASK OFFLOADING IN EDGE COMPUTING 1187

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 



because there is no need for users to offload their task to
edge nodes for processing if the computing demand is
small.

3.3 Problem Formulation

In this work, we intend to maximize the overall revenue of
edge nodes. The main problem studied is defined as
follows:

Problem 1. Given a time horizon T, a set of users U with param-
eters fSi;bi; T

arr
i ; T ddl

i ;ai1; . . . ;aij; . . . ;aimg corresponding to
the task of ui, a set of edge nodes E with parameters fBj; Vjg
corresponding to ej, and n sets Cð1Þ; . . . ; CðnÞ denoting the
edge nodes that are connected to ui, the revenue-driven online
task offloading problem is to find an allocation of tasks to edge
nodes that maximizes the overall revenue.

max
Xn
i¼1

X
ej2CðiÞ

aijbiyij; (6)

s:t:ð1Þ � ð5Þ; (7)

where bi ¼ ðbiSiÞ=ðTddl
i � Tarr

i Þ.
Theorem 1. The ROTO is NP-complete.

Proof. We prove this by reducing the multi-dimensional
knapsack problem to ROTO, which is NP-complete. The
multi-dimensional knapsack problem is defined as fol-
lows: the weight of knapsack item i is given by a D-
dimensional vector wi ¼ fw1i; . . . ; wiDg and the knapsack
has a D-dimensional capacity vector fW1; . . . ;WDg. Knap-
sack item i has its value vi. The target is to maximize the
sum of values of items in the knapsack so that the sum of
the weight in each dimension j does not exceedWj.

We construct the tasks and edge nodes as follows:

� We set the number of edge node to be 1, the pro-
cess slot to be V and the process capacity to be B.

� For each item i in knapsack, we construct a task ui

in ROTO,
� For the weight of item i, we construct a vector
f1; big in ROTO,

� For the value of item i, we construct the reward
aibi of ui in ROTO.

� For the capacity of knapsack, we construct a vec-
tor fV;Bg in ROTO.

The construction can be finished in polynomial time;
thus, we reduce solving the NP-complete multi-dimen-
sional knapsack problem to solving a special case of
ROTO, implying that ROTO is NP-complete.

With this transformation, we can prove the theorem
easily: assume, without loss of generality, there is a solu-
tion to the multi-dimensional knapsack problem, then
this solution is also the answer to the special case of
ROTO. tu

4 ALGORITHMIC DESIGN

In this section, we first relax ROTO to a linear fractional pro-
gramming problem (Section 4.1), for which we propose the
LBA algorithm based on the level and move-up energy
notions (Section 4.2). We then show the performance

guarantee of LBA through rigorous theoretical analysis
(Section 4.3), after which we present the LBR algorithm for
ROTO and prove it has the same approximation ratio as
LBA with a high probability (Section 4.4).

4.1 Relaxing ROTO to ROTO-LP

We relax constraint (2) and get the following linear formula-
tion of ROTO, which we call ROTO-LP:

max
Xn
i¼1

X
ej2CðiÞ

aijbiyij (8)

s:t: 8 ui 2 U :
X

ej2CðiÞ
yij � 1;

(9)

8 ui 2 U; ej =2 CðiÞ : yij ¼ 0; (10)

8 ej 2 E :
Xn
i¼1

biyij � Bj; (11)

8 ej 2 E :
Xn
i¼1
dyije � Vj; (12)

8 ui 2 U; ej 2 E : yij 2 ½0; 1�: (13)

Note that it is necessary to round yij in constraint (12),
which makes the result meet the constraint that edge node
ej can process at most Vj tasks at the same time.

For an online setting, at each time t 2 T, only a task of
user ui 2 U that arrives before t is known. This implies both
the objective function (8) and the left hand side sum in
Eqs. (9), (11) and (12) are unknown ahead, and they are
gradually revealed to the algorithm over the operation
period. The online algorithm does not know the length of T
and has to take into account possible future arrivals and
reserve the resources properly.

4.2 The Online Algorithm for ROTO-LP

In this subsection, we propose LBA to solve ROTO-LP, in
which each task can be divided into arbitrary size.

4.2.1 Preliminaries

Let d be the maximum number of process slots of all edges,
i.e., d ¼ maxjVj. Denote the amount of computing resources
ej has allocated to users by Vj. The notion of the level is
defined as follows.

Definition 1. (Level) Each edge node ej is associated with a level
Lj, which is an integer between ðd� VjÞ and d. The level of an
edge node changes only when the amount of computing resour-
ces it has allocated to users changes. Formally, we have

Lj , d� Vj þ VjVj

Bj

� �
: (14)

From the above definition, we know if Vj ¼ 0, then Lj ¼
d� Vj; if Vj ¼ Bj, then Lj ¼ d. We design this notion, level,
for capturing how ‘full’ an edge node is. The proposed LBA

1188 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 



algorithm prefers allocating the computing resources of
edge nodes with a small level to a newly coming task. By
doing so, LBA strives to keep all edge nodes at the same
level to avoid overloading edge nodes, which probably
increases the probability of offloading a newly coming task
to an edge node with sufficient resources. Because, other-
wise, a newly coming task may find all of the edge nodes it
can connect to are at the biggest level, i.e., overloaded.

Algorithm 1. LB-Allocation (LBA) alg. for ROTO-LP

1: Initialization: Vj  0, 8ej;
2: Lj  d� Vj þ bVjVj

Bj
c, 8ej;

3: mj  Bj

Vj
� ðLj þ 1Þ �Vj, 8ej.

4: if a new task from user ui arrives then
5: Invoke LB shown in Algorithm 2.
6: if the task of ui finishes then
7: for each edge node ej in Qi do
8: yij  0, Vj  Vj � vij, Lj  d� Vj þ bVjVj

Bj
c;

9: mj  Bj

Vj
ðLj þ 1Þ �Vj.

Note that, the level of each edge node is an integer, and it
cannot precisely represent how full an edge node is. We
introduce another important notion below.

Definition 2. (Move-up Energy) The move-up energy mj of edge
node ej is the amount of computing resources ej has to allocate
to some tasks such that the level of the edge node is increased by
exactly one. Formally,

mj ,
Bj

Vj
ðLj þ 1Þ �Vj: (15)

Take e9 in Fig. 2 for example, suppose B9 ¼ 8, V9 ¼ 4, and
d ¼ 4. Initially, L9 ¼ 0 and m9 ¼ 2, since it requires to allo-
cate 2 units of resources to increase its level to 1. When the
task of u2 arrives at time Tarr

2 and LBA allocates 2.2 units of
resources to it, L9 changes into 4� 0þ b4�2:28 c ¼ 1, and m9

changes into 8
4 ð1þ 1Þ � 2:2 ¼ 1:8.

4.2.2 The Level Balanced Allocation Algorithm

The principle of LBA is as follows: when a new task arrives,
LBA gradually allocates the computing resources of the edge nodes
with the smallest move-up energy among the edge nodes with the
smallest level to the task. Formally, we define the preference
below.

Definition 3. (Preference) LBA prefers allocating the computing
resources of ei than ej if and only if

Li < Lj (16)

or

Li ¼ Lj and mi < mj: (17)

If one of the two conditions holds, we denote the preference as

ei � ej: (18)

Algorithm 2. Level Balanced (LB) Procedure

1: b
0
i  bi, Qi  ;, vij  0, yij  0, 8ej 2 E;

2: if each edge node ej in CðiÞ with Lj ¼ d then
3: break;
4: else
5: while b

0
i 6¼ 0 do

6: L set of edge nodes with the smallest level;
7: h argminej2LðmjÞ.
8: if b

0
i 	 mh then

9: Lh  Lh þ 1, b
0
i  b

0
i � mh;

10: vih  vih þ mh, Vh  Vh þ mh;
11: mh  Bh

Vh
ðLh þ 1Þ �Vh;

12: if Lh 6¼ d, then Qi  Qi

S fehg.
13: else if b

0
i < mh and Qi 6¼ ; then

14: for each edge node ej in Qi do
15: vij  vij þ b

0
i

jQi j , Vj  Vj þ b
0
i

jQi j ;
16: mj  Bj

Vj
ðLj þ 1Þ �Vj, b

0
i  0.

17: else
18: break.
19: for each edge node ej in CðiÞ do
20: yij  vij

bi
.

Algorithm 1 shows the details of LBA. Lines 1� 3 show
the initialization of Vj, Lj, and mj of each edge node.
Remember that, LBA handles the online ROTO-LP problem.
Lines 4� 5 invoke the level balanced procedure (shown in
Algorithm 2) to allocate resources when a new task arrives.
Lines 6� 9 update yij, Vj, Lj, and mj of each edge node
when the task of ui finishes.

Before we highlight the level balanced (LB) procedure,
we introduce a few notations. We use vij to denote the
amount of resources allocated by ej to the task of ui; we use
Qi to maintain the set of edge nodes that have allocated
resources to ui; we use b

0
i to represent the amount of com-

puting demand from ui that has not been allocated. Lines
2� 3 in LB check whether all edge nodes that can be
reached from ui have exhausted their computing capacities.
Lines 5� 20 are the main loop that handles the resource
allocation.

Fig. 2. An example of running LBA algorithm.

MA ET AL.: TOWARDS REVENUE-DRIVEN MULTI-USER ONLINE TASK OFFLOADING IN EDGE COMPUTING 1189

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 



In each iteration, LB first chooses one of the edge nodes
with the highest preferences, i.e., LB chooses eh such that no
other edge node ej in CðiÞ is more preferred by LB. If b

0
i 	

mh, then LB allocates mh amount of resources on eh to the
task of ui and updates Vh, Lh, mh, vih, and b

0
i. Note that, by

allocating mh amount of resources on eh to the task of ui, the
level of eh increases by exactly 1. If b

0
i < mh, the remaining

computing demand of ui cannot increase the level of any
edge node by 1, LB equally splits the remaining demand
into jQij pieces and allocates a single piece to each edge
node in Qi.

The complexity of Algorithm 1 is Oðnm2Þ. Every time
when a new task arrives, Algorithm 2 is invoked. LB gradu-
ally allocates the computing resources to the task. The allo-
cation lasts at most OðmÞ rounds and each round LB checks
m edge nodes. So the complexity of LB is Oðm2Þ and the
complexity of Algorithm 1 is Oðnm2Þ.

4.2.3 Example

Here we use a simple example to intuitively explain our
algorithm. In Fig. 1, users u1, u2 and u3 decide to offload
their tasks to edge nodes e7, e8 and e9. Assuming that e7, e8
and e9 can process at most 2, 3 and 4 tasks at the same time,
respectively. The computing capacity of e7, e8 and e9 are 2, 6
and 8 units, respectively. The levels of e7, e8 and e9 are ini-
tialized to 2, 1 and 0, respectively. m7 is initialized as 1 unit,
and m8 and m9 are both initialized as 2 units. The running
process of this example is shown in Fig. 2.

Without loss of generality, we assume that u2 submits its
task first, and its computing demand is 2.2 units. Since e9
has the smallest level and m9 is smaller than b

0
2 (b

0
2 is initial-

ized as 2.2 units), LBA first allocates 2 units of computing
resources on e9 to u2 and updates the states of e9, which
makes m9 ¼ 2, V9 ¼ 2, v1;9 ¼ 2, L9 ¼ 1. Then LBA adds e9 to
Q2. After that, b

0
2 is updated to 2:2� 2 ¼ 0:2. Since b

0
2 is

smaller than any move-up energy of edge nodes with the
smallest level, LBA allocates b

0
2 units of computing resour-

ces on edge nodes in Q2, i.e., e9. The states of e9 are updated
according to LBA, which makes m9 ¼ 1:8, V9 ¼ 2:2 and
v1;9 ¼ 2:2. Then, u1 submits its task with a demand of 3.8
units. Since e8 and e9 have the smallest level and m9 is
smaller than m8 (1:8 < 2), LBA first allocates 1.8 units of
computing resources on e9 to u1 and updates the states of
e9. In the end, 1.8 and 2 units of computing resources on e9
and e8 are allocated to u1, respectively. Finally, u3 submits
its task with a demand of 5.6 units. According to LBA, e7
allocates 1.2 units of computing resources to u3; e8 and e9
each allocate 2.2 units of computing resources to u3.

4.3 Competitive Analysis of LBA

In this section, we first formulate the dual problem of
ROTO-LP and then intelligently construct the potential
function, which plays an important role in the analysis. We
then present two lemmas and the weak duality theorem
before proving the approximation ratio of LBA.

4.3.1 Dual Problem of ROTO-LP

Here we use an indicator variable kij to help analyze the
algorithm, where kij denotes whether the task of ui is

offloaded to edge node ej. Hence

8ej 2 E :
Xn
i¼1

kij � Vj; (19)

8ui 2 U; ej 2 E : yij ¼ kijyij; (20)

8ui 2 U; ej 2 E : kij 2 f0; 1g: (21)

Put zi to be the dual variable for user ui, and introduce a
variable xj for edge node ej, then the dual problem of
ROTO-LP is to minimize

Pm
j¼1 Bjxj þ

Pn
i¼1 zi subject to

8ui 2 U; ej 2 E : zi þ bikijxj 	 aijbikij; (22)

8ej 2 E :
Xn
i¼1

kij � Vj; (23)

and constraints xj 	 0, zi 	 0, kij 2 f0; 1g, 8ej 2 E, ui 2 U.
Before entering the approximation analysis, we first elab-

orate the potential function, fði; jÞ, which relates the values
of the prime variables to that of the dual objective function.

4.3.2 Potential Function

Consider the time point when ui just arrives, in which the ith
dual constraint is given and assume that it is not satisfied.
Our goal is to constrain the derivative of the dual cost (D) as
a function of the primal profit (P ). That is, show that @D

@yij
¼

Bj
@xj
@yij
� � @P

@yij
; where � is going to be the competitive factor.

Supposing that the derivative of the dual cost satisfies

Bj
@xj
@yij
¼ A bixj þ aijbi

d

� �
; (24)

where A is a constant. Then, since xj � aijbi
bi
¼ aij (due to

Inequality (22)),
aijbi
d � aijbi for d 	 1, and @P

@yij
¼ aijbi, we get

that A bixj þ aijbi
d

� �
� 2A @P

@yij
. Thus, � ¼ 2A. By solving

Eq. (24), we get
@xj
@yij
¼ A

Bj
bixj þ aijbi

d

� �
. Through integration,

the following equation can be obtained: xj ¼ G �
exp A

Bj

Pi
w¼1 bwkwjywj

� �
� aij

d , where expðxÞ ¼ ex and G can

take any value. Next, we have the following two boundary

conditions on this equation:

� Initially, xj ¼ 0, and this happens whenPi

w¼1 bwkwjywj
Bj

¼ 0;

� If

Pi

w¼1 bwkwjywj
Bj

¼ 1, (i.e., the primal constraint is
tight) then xj ¼ aij. (Then, the dual constraint is also
satisfied.)

The first boundary gives G ¼ aij=d. The second bound-
ary gives A ¼ lnðdþ 1Þ. Thus we get the potential function:

fði; jÞ ¼ aij

d
exp

lnðdþ 1Þ
Bj

Xi
w¼1

bwkwjywj

 !
� 1

" #
:

If
Pi

w¼1 bwkwjywj ¼ Bj, then fði; jÞ ¼ aij. We denote ai ¼
maxej2CðiÞaij. And for edge node ej, xj ¼ fði; jÞ.

1190 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 



4.3.3 Bounded Iteration

Let P ðiÞ and DðiÞ be the values of the objective function of
the primal and dual solutions, respectively, derived from
the algorithm when ui submits its task. Upon the arrival of
a new task, we update both primal and dual programs.
The primal program is updated by adding a new con-
straint corresponding to the user and a new term bikijyij to
each constraint of an edge node. The dual program is
updated by adding a new variable zi for the new user and
a constraint of the form bikijxj þ zi 	 bikij for each edge
node.

The dual solution is an assignment of values to the varia-
bles xj and zi. Initially, the values of primal and dual solu-
tions are zero. Let DP ðiÞ and DDðiÞ be the changes of P ðiÞ
andDðiÞ, respectively, after user ui submits its task.

Lemma 1. In each iteration (arrival of ui): DDðiÞ �
2ð1þ �Þ lnðdþ 1ÞDP ðiÞ.

Proof. First, we consider the situation where the task of ui is
not fully allocated to edge nodes. This means that all edge
nodes in CðiÞ where kij ¼ 1 have exhausted all their com-
puting capacities after allocating computing resources to
ui. In this case, the corresponding variable xj with kij ¼ 1
are all aij at the end of the iteration. As a result, all the
new dual constraints are satisfied, and we can set zi ¼ 0.
For xj with kij ¼ 0, setting zi ¼ 0 also satisfies the con-
straints, because bi � 0 � xj þ 0 ¼ 0 ¼ bi � 0. We only need
to show that the change in the dual cost in this iteration is
bounded. When we increase the variable yij, the deriva-

tive of the primal profit of the algorithm is
@ðaijbiyijÞ

@yj
¼ aijbi.

The derivative of the dual cost Bj
@fðxÞ
@yij

is:

Bj
aijbi lnðdþ 1Þ

dBj
exp

lnðdþ 1Þ
Bj

Xi
w¼1

bwywj

 !" #

¼ bi lnðdþ 1Þ aij

d
exp

lnðdþ 1Þ
Bj

Xi
w¼1

bwywj

 !
� 1

" #
þ aij

d

 !

¼ bi lnðdþ 1Þ xj þ aij

d

� �
� bi lnðdþ 1Þ � 2aij < 2ð1þ �Þ lnðdþ 1Þaijbi:

The first inequality holds since xj ¼ aij and aij=d � aij.
Thus, we get DDðiÞ � 2ð1þ �Þ lnðdþ 1ÞDP ðiÞ after ui

submits its task under the condition where the task of
user ui is not fully allocated by LBA.

Then we consider the situation where the task of user
ui is fully offloaded to the edge nodes in CðiÞ. Note that
the task may be offloaded to several edge nodes. We
analyze this situation as follows. For edge node ej with
kij ¼ 0, the derivative of the dual cost is 0, and the con-
straint is satisfied for all zi 	 0. For edge nodes with
kij ¼ 1, the derivative of the dual cost is bi lnðdþ
1Þðfðj;aijÞ þ aij=dÞ. We set zi ¼ bi lnðdþ 1Þðai � ai=dÞ to
satisfy all the new dual constraints for edge node with
kij ¼ 1. We can prove these constraints are satisfied as
follows:

zi þ bixj (25)

¼ bi lnðdþ 1Þ ai � ai

d

� �

þ biai

d
exp

lnðdþ 1Þ
Bj

Xw
w¼1

bwywj

 !
� 1

" #
(26)

¼ biai

d
ðd� 1Þ lnðdþ 1Þ þ exp

lnðdþ 1Þ
Bj

Xi
w¼1

bwywj

 !
� 1

" #

(27)

	 biai

d
ðd� 1Þ lnðdþ 1Þ þ exp

lnðdþ 1Þ
d

� �
� 1

� 	
(28)

	 biai

d
� d 	 aijbi: (29)

Inequality (28) holds since
Pi

w¼1 bwywj=Bj 	 1=d for each
node with kij ¼ 1. The first inequality of (29) holds since
ðd� 1Þ lnðdþ 1Þ þ exp lnðdþ1Þ

d

� �
� 1 	 d, for d 	 3. Thus,

all the new dual constraints are satisfied.
Therefore, when ui arrives, the dual cost of each edge

node, ej (zi þBjDðxjÞ), is updated as

bi lnðdþ 1Þ ai � ai

d

� �
þ bi lnðdþ 1Þ xj þ aij

d

� �
¼ bi lnðdþ 1Þ ai � ai

d
þ xj þ aij

d

� �
� bi lnðdþ 1Þ ai � ai

d
þ xj þ ai

d

� �
¼ bi lnðdþ 1Þðai þ xjÞ
� bi lnðdþ 1Þ � 2ai � 2ð1þ �Þ lnðdþ 1Þaijbi:

Thus the lemma follows. tu

4.3.4 Feasibility

Here, we show the feasibility of LBA.

Lemma 2. The algorithm LBA produces a feasible solution for
both the primal and dual ROTO-LP problem.

Proof. For the ROTO-LP problem, LBA never increasesPi
w¼1 bwywj to be greater than Bj. Whenever

Pi
w¼1 bwywj

increases in some iteration and reaches Bj, LBA stops
allocating computing resources from ej to users, because
the computing capacity of ej is exhausted. Therefore, the
value of

Pi
w¼1 bwywj is not going to change anymore

unless some tasks processed on ej are completed, which
reduces

Pi
w¼1 bwywj. Also, LBA never increases

P
j2CðiÞ yij

beyond 1. Whenever
P

j2CðiÞ yij in some iteration equals
to 1, LBA stops allocating computing resources for ui,
because ui’s computing demand is satisfied.

For the dual problem of ROTO-LP, before any task on
ej is finished, the resources allocated on ej will not
decrease after the arrivals of subsequent users, which
makes xj monotonically increasing and the constraint (22)
always holds. Once a task on ej is finished, the value of xj

is either equal to 0 (no task is processed on ej anymore)
or greater than 1=d (at least one task is processed on ej).
We set zi ¼ bilnðdþ 1Þðai � ai=dÞ. If xj ¼ 0, then the

MA ET AL.: TOWARDS REVENUE-DRIVEN MULTI-USER ONLINE TASK OFFLOADING IN EDGE COMPUTING 1191

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 



constraint (22) is satisfied for any zi 	 0. If xj 6¼ 0, from
Eqs. (25), (26), (27), (28), and (29), the constraint (22) still
holds. tu

4.3.5 Weak Duality

We prove weak duality of ROTO-LP here.

Theorem 2. Let y ¼ ðy11; . . . ; yij; . . . ; ynmÞ and x ¼
ðx1; x2; . . . ; xmÞ be feasible solutions to the primal and dual
ROTO-LP, respectively. Then:

Xm
j¼1

Bjxj þ
Xn
i¼1

zi 	
Xn
i¼1

aijbiyij:

Theorem 2 states that the value of any feasible dual solu-
tion is at least the value of any feasible primal solution.
Thus, the solution of the dual program can be used as a
upper bound for any feasible primal solution. The proof of
this theorem is as follows:

Proof.

Xm
j¼1

Bjxj þ
Xn
i¼1

zi (30)

	
Xm
j¼1

Xn
i¼1

bikijyij

 !
xj þ

Xn
i¼1

zi (31)

	
Xm
j¼1

Xn
i¼1

bikijyij

 !
xj þ

Xn
i¼1

zi
Xm
j¼1

yij

 !
(32)

¼
Xn
i¼1

Xm
j¼1

bikijxj

 !
yij þ

Xn
i¼1

Xm
j¼1

ziyij (33)

¼
Xn
i¼1

Xm
j¼1
ðbikijxj þ ziÞ

 !
yij (34)

	
Xn
i¼1

aijbikijyij (35)

¼
Xn
i¼1

aijbiyij; (36)

where inequalities (31) and (32) hold since
Pn

i¼1 bikijyij �
Bj and

Pm
j¼1 yij � 1. Eq. (33) holds by changing the order

of summation. Eq. (34) holds by merging the summation.
Inequality (35) holds since x ¼ ðx1; x2; . . . ; xmÞ is feasible,
which means inequality (22) is satisfied. Eq. (36) holds
since kijyij ¼ yij. tu

Theorem 3. Algorithm LBA is 2ð1þ �Þ lnðdþ 1Þ-competitive.

Proof. Theorem 3 can be easily proved based on Lemmas 1
and 2 and the weak duality. tu

4.4 The Online Algorithm for ROTO

In this subsection, we propose the solution to solve the
ROTO problem, and show that the proposed algorithm
achieves an approximation of 2ð1þ �Þ lnðdþ 1Þ with a prob-
ability of at least 1� e�sn, where n is the number of users
and s is a constant.

4.4.1 The Level Balanced Rounding Algorithm

The pseudo code of the algorithm is shown in Algorithm 3.
Upon the arrival of a user ui, LBR invokes LB procedure and
gets the fractional solution yij for offloading decisions (Line
5). The key idea of LBR is using the rounding technique to
turn the fractional solution into an integer solution. The
rounding steps are as follows: Since

P
ej2E yij � 1, we can

map each
Pj

w¼1 yiw (j from 1 to m) to a point with valuePj
w¼1 yiw on the interval [0,1], and the segment between pointPj�1
w¼1 yiw and

Pj
w¼1 yiw represents the probability of offload-

ing the task to edge node ej. Note that
Pm

w¼1 yiw may be
smaller than 1, then the segment between point

Pm
w¼1 yiw and

point 1 represents the probability of rejecting the task of ui.

Algorithm 3. LB-Rounding (LBR) alg. for ROTO

1: Initialization: Vj  0, 8 ej;
2: Lj  d� Vj þ bVjVj

Bj
c, 8ej;

3: mj  Bj

Vj
� ðLj þ 1Þ �Vj, 8ej.

4: if a new task of user ui arrives then
5: Invoke LB shown in Algorithm 2 for the solution yij.
6: Choose r uniformly in the interval [0,1].
7: if r >

Pm
w¼1 yiw then

8: Reject the task of ui, €yij  0, 8ej 2 CðiÞ.
9: for j ¼ 1 tom do
10: if

Pj�1
w¼1 yiw < r �Pj

w¼1 yiw then
11: Allocate ui to ej;
12: €yij  1, Vj  Vj � vij þ bi, vij  bi;

13: Lj  d� Vj þ bVjVj

Bj
c, mj  Bj

Vj
ðLj þ 1Þ �Vj;

14: €yiw  0, 8w 6¼ j, break.
15: for each edge node ej in CðiÞ do
16: if €yij ¼ 0 then
17: Vj  Vj � vij, vij  0, Lj  d� Vj þ bVjVj

Bj
c;

18: mj  Bj

Vj
ðLj þ 1Þ �Vj, Qi  Qi n fejg.

19: if the task of ui finishes then
20: for each edge node ej in Qi do
21: €yij  0, Vj  Vj � vij, Lj  d� Vj þ bVjVj

Bj
c;

22: mj  Bj

Vj
ðLj þ 1Þ �Vj.

We choose r uniformly in the interval [0,1] (Line 6). Then
we decide whether to reject the task or to offload the task to
a specific edge node according to r (Lines 7-18). We use €yij
to represent the solution produced by LBR. Note that €yij is a
binary variable after rounding, in general €yij 6¼ yij. Lines 12-
13 update Vj, Lj, and mj of the edge node ej with €yij ¼ 1.
Lines 15-18 update the states of each edge node ej with €yij ¼
0 in CðiÞ. Lines 19-22 update the states of each edge node
when a task finishes.

The complexity of Algorithm 3 is Oðnm3Þ. Compared to
Algorithm 1, Algorithm 3 has one more step. Every time
when LBA gets the fractional solution, LAR uses the round-
ing technique to turn the fractional solution into an integer
solution. And the complexity of rounding is OðmÞ. As a
result, the complexity of Algorithm 3 is Oðnm3Þ.

1192 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 



4.4.2 Analysis

Denote the objective value achieved by the LBA algorithm
as Y . Denote the optimal objective value of ROTO and
ROTO-LP as OPT and OPT-LP, respectively. Note that we

have proved in the previous section that Y 	 OPT-LP
2ð1þ�Þ lnðdþ1Þ .

Since ROTO-LP is a convex relaxation of ROTO, we have
OPT-LP	 OPT. Thus, we get 2ð1þ �Þ lnðdþ 1ÞY 	 OPT.

Denote the objective value derived from LBR as €Y . We
define a random variable €Yi such that €Yi ¼

P
ej2CðiÞ aijbi €yij.

Then, we have €Y ¼Pn
i¼1 €Yi, and E½ €Y � ¼Pn

i¼1 E½ €Yi� ¼Pn
i¼1
P

ej2CðiÞ aijbi €yij ¼ Y .

Theorem 4. For any d 2 ð0; 1Þ,

Pr €Y < ð1� dÞ OPT

2ð1þ �Þ lnðdþ 1Þ
� �

� e�sn:

Proof. We use the Chernoff Bound [37] to facilitate the
proof.

Obviously, the random variables f €Yig are independent
by construction. By applying the Chernoff Bound,we have

Pr €Y � ð1� dÞ OPT

2ð1þ �Þ lnðdþ 1Þ
� �

¼ Pr
Xn
i¼1

€Yi � ð1� dÞ OPT

2ð1þ �Þ lnðdþ 1Þ

 !

� Pr
Xn
i¼1

€Yi � ð1� dÞ OPT-LP

2ð1þ �Þ lnðdþ 1Þ

 !

� Pr
Xn
i¼1

€Yi � ð1� dÞY
 !

¼ Prð €Y � ð1� dÞY Þ
� expð�d2Y =2Þ:

Without loss of generality, we assume that OPT=

OðnÞ. Since Y 	 OPT-LP
2ð1þ�Þ lnðdþ1Þ 	 OPT

2ð1þ�Þ lnðdþ1Þ , we can find

some constant C > 0 such that Y 	 Cn for sufficiently

large n. Therefore,

exp � d2Y

2

� �
� exp � d2Cn

2

� �
:

Let s ¼ d2C=2, then we have

Pr €Y < ð1� dÞ OPT

2ð1þ �Þ lnðdþ 1Þ
� �

� e�sn:

The theorem holds immediately. tu
4.5 Discussions

In this subsection, we discuss a few limitations of our work
and some possible future directions.

� Divisible Tasks. We assume in this work that the tasks
of users are atomic. However, in many situations, a
task can be divided into several independent or
dependent subtasks. For dependent subtasks, we
consider the subtasks that can be processed in

parallel as independent tasks according to their
DAG graphs. We consider independent subtasks as
a new task and set the revenue of them according to
their weights in the entire task.

� Non-negligible Devices’ Capacities. Our work focus on
the scenarios that the mobile device has very limited
computing resource, and hence all the tasks should be
offloaded to the edge nodes for execution [38]. Under
the condition where the mobile device has more pow-
erful computing capacity and the task is divisible, we
can consider the user as a special edge node, which
only connects to the user itself, and set the revenue as
the energy consumption if the task is processed locally.
LBA can be slightly adjusted to suit this condition.

� Dynamic Revenue. Our work assumes that the reve-
nue of the task is fixed. However, users may be will-
ing to pay more for their tasks due to the urgency.
The revenue ratio aij can be dynamically modified
according to current time and deadline, which
means scheduling some urgent tasks can bring in
more revenue. Meanwhile, because of the existence
of competition, users need to consider how to mod-
ify their prices so that their tasks can be completed at
the edge node with minimal cost. We plan to use
game-theoretic framework to study this problem.

� Uncertain Task Requirements.Wemainly talk about the
scenario where the computing requirement of each
task is available. However, in realistic scenarios, the
size of the task can be measured but its processing
time is generally uncertain until it is completed. Task
assignment under the uncertainty of the processing
time is well studied in theoretical computer sci-
ence [39], [40]. However, most works focus on the
design of efficient task scheduling and do not concern
the allocation of computing resources. We would like
to study the computation offloading problem under
uncertain processing time in the future.

� Nonnegligible Transmission Time. In this paper, we
assume that with the rapid development of 5G net-
work, the time of transmission is small enough to be
ignored [33]. Meanwhile, we assume that users
arrive one by one and the task of the user can only
be offloaded to the edge nodes that are within the
communication range of the same BS as the user. As
a result, the scale of the ROTO problem will not be
particularly large. However, for large-scale MEC
scenes, the performance of the algorithm may not be
as good as theoretically. Collecting and scheduling a
large amount of edge nodes in a short period of time
is a big challenge. We plan to use a distributed com-
petition method to analysis the problem when con-
sidering the transmission delay. Specifically, we
plan to design a self-organizing distributed frame-
work, that is, whenever a user arrives, the schedul-
ing calculations of task offloading is only performed
in the BS to which the user can connect.

5 TRACE-DRIVEN SIMULATION

In this section, we demonstrate the performance of LBR. We
compare LBR with three baseline algorithms. Both of them

MA ET AL.: TOWARDS REVENUE-DRIVEN MULTI-USER ONLINE TASK OFFLOADING IN EDGE COMPUTING 1193

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 



assume that the information of all users is known in
advance. The first one is the Random Allocation (RA) algo-
rithm, when the user arrives, RA randomly offloads the task
to an edge node connected to the user. The second one is
the Greedy Allocation (GA) algorithm, which always off-
loads tasks to the edge node with the maximum revenue.
The third one is the optimal (OPT) solution, which is
obtained from the existing mathematical tools (IBM
CPLEX [41]). After presenting the setup and parameters,
the results are shown from different perspectives to provide
insightful conclusions.

5.1 Simulation Settings

We envision a mobile edge computing system deployed
inside a megacity in Asia.

Edge Node Trace. For the locations of envisioned edge
nodes, we use the locations of the Starbucks due to the fact
that Starbucks shops in a city can usually achieve a decent
coverage for users. In addition, the distribution of Starbucks
actually follows the population density, making them perfect
locations for edge cloud deployment in the future. We collect
the locations of 105 Starbucks in themegacity, which is shown
in Fig. 3. Each Starbucks is envisioned as an edge node. Then
the default number of edge nodes is 105. The computing
capacity of an edge node is in a range of 3� 4 GHz and the
process slots of each edge node is in a range of 4� 12.

Task Trace. The task statistics are in accordance with [31].
For tasks, the expected input data size per task is 8 MB, and
the expected number of CPU cycles required to process one
byte of data is 1000, which makes the computing demand of
users be in a range of 0.27-0.4 gigacycles. The price statistics
are in accordance with [35], [36]. The value of the price of
unit computing demand aij is set between 0.5 and 0.6.

User Trace. The number of customers visiting a Starbucks
shop in a day in the megacity is about 500, which implies

about 50 customers in an hour. We set the total running time
as jT j ¼ 100. We set the default number of users to 5000.
Locations of users are randomly distributed in the megacity.
In the 5G scenario, we consider a user can connect to an
edge node if the distance between them is within the com-
munication range, and the default communication range is
3km. For users, we use the data traces of Google clus-
ters [42]. Note that, these traces only contain the information
of processing time, dependency relationship and required
processing resources for each task. We adjust users’ arrival
time based on Poisson distribution to accommodate stochas-
tic arrival and the length between deadlines and arrival
time are uniformly distributed in ½20; 30�.

5.2 Simulation Results

In Fig. 5a, we evaluate the influence of the number of users
which varies from 2000 to 6000. We observe the trend that
as the number of users grows, the overall revenue grows
accordingly. This is reasonable because more users will be
served to maximize the revenue as long as the edge nodes
have sufficient computing capacity. We also observe that,
the overall revenue does not exceed a certain threshold.
This is because the computing capacity of edge nodes is lim-
ited. Once edge nodes exhaust their capacities, the future
users will not be served, thus the revenue will no longer
increase. Our online algorithm always outperforms the RA
and GA and is close to the optimal algorithm.

Fig. 5b shows the impact of the number of edge nodes on
overall revenue. We randomly choose 60� 100 edge nodes
among 105 edge nodes. We observe that the overall revenue
increases as the number of edge nodes increases. This is
because, with the increase of the number of edge nodes, the
computing capacity has increased accordingly. And more
computing capacity will also bring more revenue. Still, our

Fig. 4. Our testbed.Fig. 3. Loc. of starbucks.

Fig. 5. Simulation results for our algorithm and the baseline algorithms with different configurations.

1194 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 



algorithm performs better than RA and GA and is close to
the optimal algorithm.

In Fig. 5c, we inspect the impact of the network topol-
ogy. We vary the communication range from 1km to 5km,
which makes the average number of edge nodes that con-
nect to a user vary between 1 and 20. We observe that, the
overall revenue grows as the number of connections
increases. This is as expected, because when there are few
connections, it is very likely that all the edge nodes that
connected to the user have exhausted their computing
capacities, while other edge nodes still have sufficient
capacities. With more connections, this happens less likely.
And the overall revenue in our algorithm is significantly
higher than that in RA and GA and is close to the optimal
algorithm.

Fig. 5d shows the results with different number of pro-
cess slots. We vary the number of process slots of each edge
node from 4 to 12. We can see from Fig. 5d, as the number
of process slots grows, the overall revenue grows. This is
because, with more process slots more users can be served
by each edge node, thus the overall revenue increases. And
our algorithm outperforms the classic RA and GA algo-
rithms and is close to the optimal algorithm.

The reasons why LBR outperforms GA and RA will be
discussed in Section 6.2.

6 TESTBED EXPERIMENT

In this section, we implement the revenue-driven online
task offloading system and conduct experiments based on
the implementation to validate the performance of LBR.

6.1 Testbed Setting

Deployment Platforms. The testbed environment is shown in
Fig. 4; we use 5 Raspberry Pi 4 Model B (ARM Cortex-A72
CPU, 4 Cores @ 1.5 GHz)) and 3 Raspberry Pi 3 Model B
(ARM Cortex-A53 CPU, 4 Cores @ 1.2 GHz) as edge nodes.
We use 2 Samsung S4 and 2 Samsung note3 phones as users,
and each user is connected to 3� 5 Raspberry Pis. The pro-
gram is written in python3.7 environment, and has roughly
implemented with about 2.3k lines of codes.

User Trace.We adjust users’ arrival time based on Poisson
distribution. The time between the arrival time and the
deadline of a task are uniformly distributed in [10,15].

Task Trace. Consider the realistic task trace from Google
cluster as computation-intensive tasks, which contains the
information of processing time, dependency relationship
and required processing resources for each task [42]. The

expected number of CPU cycles required to process one
byte of data is in accordance with [31]. We set up two differ-
ent tasks in our experiments, namely pdf2text and
html2text programs. The expected number of CPU cycles
required to process one byte of data of pdf2text and
html2text is 1000 and 6000, respectively. The value of the
price of unit computing demand aij is set between 0.5 and
0.6. We set the size of each pdf2text task between 1.05 MB
and 4.45 MB, and the size of each html2text task is set
between 5.9 MB and 9 MB. We set the total running time as
jT j ¼ 100.

6.2 Performance Comparison

Fig. 6a shows the change in overall revenue over time. Note
that an edge node can only gain the revenue after the task is
successfully executed. In the first 10 seconds, the total reve-
nue remains at 0 because no tasks have been completed yet.
We observe that the performance of all algorithms is very
similar in the beginning. This is because the computing
resources of edge nodes were sufficient in the beginning
and all tasks can be offloaded to edge nodes. We also
observe that GA and RA perform better than LBR in the
beginning, this is because LBR always selects the edge node
with the smallest level, which may not bring the biggest rev-
enue. However, LBR outperforms baselines over time, and
the overall revenue in LBR is 50 percent higher than that in
the baselines in the end.

The experimental results on the testbed are consistent
with our simulation results. Figs. 6b and 6c show the overall
revenue versus the number of users and the number of
edge nodes, respectively. The overall revenue increases
with the growth of the number of users and the number of
edge nodes, and LBR achieves significant revenue incre-
ment compared to other algorithms. Fig. 6d evaluates the
impact of the number of connections between users and
edge nodes on the overall revenue. By increasing the num-
ber of connections, the overall revenue will also increase.

The reason why LBR outperforms GA and RA in
Figs. 5a, 5b, 6b and 6c is as follows: In the beginning, GA
prefers to offload tasks on the edge nodes with the maxi-
mum revenue, which causes imbalance in the remaining
resources of edge nodes. Thus, some edge nodes may
exhaust their resources quickly while others still have suffi-
cient resources. As a result, the newly arrived task is very
likely to be rejected because all of the edge nodes it can con-
nect to are overloaded. This situation may also occur when
applying RA.

Fig. 6. Testbed results for our algorithm and the baseline algorithms with different configurations.

MA ET AL.: TOWARDS REVENUE-DRIVEN MULTI-USER ONLINE TASK OFFLOADING IN EDGE COMPUTING 1195

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 



The reason why LBR outperforms GA and RA in
Figs. 5c, 5d, and 5d is as follows. The number of connections
and process slots will not affect the offloading decisions of
GA and RA. More connections and process slots will only
slow down the speed at which some edge nodes exhaust
their resources, and cannot change the result that some
edge nodes exhaust their resources while others have suffi-
cient resources.

7 CONCLUSION

In this paper, we formulate the task computation offloading
as an optimization problem to maximize offloading revenue
while providing performance guarantees. The proposed
algorithm achieves the approximation of 2ð1þ �Þ lnðdþ 1Þ
with a probability of at least 1� e�sn. Trace-driven simula-
tions and testbed experiments have shown that our pro-
posed scheme outperforms the classic RA and GA
algorithms and is close to the optimal algorithm.

ACKNOWLEDGMENTS

This work was supported in part by National Key R&D Pro-
gram of China under Grant 2017YFB1001801, in part by the
NSFC under Grants 61872175 and 61832008, and Collabora-
tive Innovation Center of Novel Software Technology and
Industrialization.

REFERENCES

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for VM-based cloudlets in mobile computing,” IEEE Pervasive
Comput., vol. 8, no. 4, pp. 14–23, Fourth Quarter 2009.

[2] Z. Zhang and W. Hao, “Development of a new cloudlet content
caching algorithm based on web mining,” in Proc. IEEE 8th Annu.
Comput. Commun. Workshop Conf., 2018, pp. 329–335.

[3] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and
user to cloudlet allocation in wireless metropolitan area
networks,” IEEE Trans. Cloud Comput., vol. 5, no. 4, pp. 725–737,
Fourth Quarter 2017.

[4] C. Li, J. Tang, and Y. Luo, “Dynamic multi-user computation off-
loading for wireless powered mobile edge computing,” J. Netw.
Comput. Appl., vol. 131, pp. 1–15, Apr. 2019.

[5] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation
offloading in green mobile edge cloud computing,” IEEE Trans.
Services Comput., vol. 12, no. 5, pp. 726–738, Sep./Oct. 2018.

[6] L. Huang, X. Feng, L. Zhang, L. Qian, and Y. Wu, “Multi-server
multi-user multi-task computation offloading for mobile edge
computing networks,” Sensors, vol. 19, no. 6, 2019, Art. no. 1446.

[7] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang,
“Intelligent edge: Leveraging deep imitation learning for mobile
edge computation offloading,” IEEE Wireless Commun., vol. 27,
no. 1, pp. 92–99, Feb. 2020.

[8] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis,
“Optimized computation offloading performance in virtual edge
computing systems via deep reinforcement learning,” IEEE Inter-
net of Things J., vol. 6, no. 3, pp. 4005–4018, Jun. 2019.

[9] N.Maurice, Q.-V. Pham, andW.-J. Hwang, “Online computation off-
loading in noma-based multi-access edge computing: A deep rein-
forcement learning approach,” IEEE Access, vol. 8, pp. 99 098–99 109,
2020.

[10] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas,
“Computation offloading in multi-access edge computing using a
deep sequential model based on reinforcement learning,” IEEE
Commun. Mag., vol. 57, no. 5, pp. 64–69, May 2019.

[11] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang,
“Learning-based computation offloading for IoT devices with
energy harvesting,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp.
1930–1941, Feb. 2019.

[12] G. Qiao, S. Leng, and Y. Zhang, “Online learning and optimization
for computation offloading in D2D edge computing and
networks,”Mobile Netw. Appl., pp. 1–12, 2019.

[13] A. Samanta and Z. Chang, “Adaptive service offloading for reve-
nue maximization in mobile edge computing with delay-con-
straint,” IEEE Internet of Things J., vol. 6, no. 2, pp. 3864–3872, Apr.
2019.

[14] J. Huang, S. Li, and Y. Chen, “Revenue-optimal task scheduling
and resource management for IoT batch jobs in mobile edge
computing,” Peer-to-Peer Netw. Appl., vol. 13, pp. 1776–1787, 2020.

[15] D. Zhang et al., “Near-optimal and truthful online auction for
computation offloading in green edge-computing systems,” IEEE
Trans. Mobile Comput., vol. 19, no. 4, pp. 880–893, Apr. 2020.

[16] Z. Cao, H. Zhang, B. Liu, and B. Sheng, “A game-theoretic frame-
work for revenue sharing in edge-cloud computing system,” in
Proc. IEEE 37th Int. Perform. Comput. Commun. Conf., 2018, pp. 1–8.

[17] “Aliyun edge,” 2021. [Online]. Available: https://blog.karatos.in/
a?ID=01050-d5c12e84-ca86–458f-abb7-adf595688385

[18] “Amazon edge,” 2021. [Online]. Available: https://aws.amazon.
com/lambda/edge/

[19] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes:
Latency optimal task assignment for resource-constrained mobile
computing,” IEEE Trans. Mobile Comput., vol. 16, no. 11, pp. 3056–
3069, Nov. 2017.

[20] L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and H. Huang,
“Dependent task placement and scheduling with function config-
uration in edge computing,” in Proc. IEEE/ACM 27th Int. Symp.
Qual. Service, 2019, pp. 1–10.

[21] S. Jo�silo and G. D�an, “A game theoretic analysis of selfish mobile
computation offloading,” in Proc. IEEE Conf. Comput. Commun.,
2017, pp. 1–9.

[22] T. Zhu, J. Li, Z. Cai, Y. Li, and H. Gao, “Computation scheduling
for wireless powered mobile edge computing networks,” in Proc.
IEEE Conf. Comput. Commun., 2020, pp. 1–9.

[23] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading
dependent tasks in mobile edge computing with service caching,”
in Proc. IEEE Conf. Comput. Commun., 2020, pp. 1–9.

[24] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service
caching and workload scheduling in mobile edge computing,” in
Proc. IEEE Conf. Comput. Commun., 2020, pp. 1–9.

[25] M. Chen and Y. Hao, “Task offloading for mobile edge computing
in software defined ultra-dense network,” IEEE J. Sel. Areas Com-
mun., vol. 36, no. 3, pp. 587–597, Mar. 2018.

[26] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user-
managed service placement for mobile edge computing: An
online learning approach,” in Proc. IEEE Conf. Comput. Commun.,
2019, pp. 1468–1476.

[27] S. Jo�silo and G. D�an, “Wireless and computing resource allocation
for selfish computation offloading in edge computing,” in Proc.
IEEE Conf. Comput. Commun., 2019, pp. 2467–2475.

[28] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial com-
putation offloading scheme for mobile edge computing enabled
internet of things,” IEEE Internet of Things J., vol. 6, no. 3, pp.
4804–4814, Jun. 2019.

[29] H. Guo, J. Liu, and J. Zhang, “Efficient computation offloading for
multi-access edge computing in 5G hetnets,” in Proc. IEEE Int.
Conf. Commun., 2018, pp. 1–6.

[30] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic joint radio
and computational resource management for multi-user mobile-
edge computing systems,” IEEE Trans. Wireless Commun., vol. 16,
no. 9, pp. 5994–6009, Sep. 2017.

[31] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile
clients in cloud computing,” in Proc. 2nd USENIX Conf. Hot Topics
Cloud Comput., 2010, Art. no. 19.

[32] H. Yuan, J. Bi, W. Tan, and B. H. Li, “Temporal task scheduling
with constrained service delay for profit maximization in hybrid
clouds,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 1, pp. 337–348,
Jan. 2017.

[33] X. Ge, S. Tu, G. Mao, C.-X. Wang, and T. Han, “5G ultra-dense cel-
lular networks,” IEEE Wireless Commun., vol. 23, no. 1, pp. 72–79,
Feb. 2016.

[34] X. Tao, H. Qi, W. Li, K. Li, and Y. Liu, “Profit-aware scheduling in
task-level for datacenter networks,” Comput. Elect. Eng., vol. 61,
pp. 327–338, Jul. 2017.

1196 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 

https://blog.karatos.in/a?ID=01050-d5c12e84-ca86--458f-abb7-adf595688385
https://blog.karatos.in/a?ID=01050-d5c12e84-ca86--458f-abb7-adf595688385
https://aws.amazon.com/lambda/edge/
https://aws.amazon.com/lambda/edge/


[35] R. Li, Z. Zhou, X. Chen, and Q. Ling, “Resource price-aware off-
loading for edge-cloud collaboration: A two-timescale online con-
trol approach,” IEEE Trans. Cloud Comput., to be published, doi:
10.1109/TCC.2019.2937928.

[36] M. Liu and Y. Liu, “Price-based distributed offloading for mobile-
edge computing with computation capacity constraints,” IEEE
Wireless Commun. Lett., vol. 7, no. 3, pp. 420–423, Jul. 2018.

[37] M. Mitzenmacher and E. Upfal, Probability and Computing: Ran-
domization and Probabilistic Techniques in Algorithms and Data Anal-
ysis. Cambridge, U.K.: Cambridge Univ. Press, 2017.

[38] K. Wang, K. Yang, and C. S. Magurawalage, “Joint energy minimi-
zation and resource allocation in C-RAN with mobile cloud,”
IEEE Trans. Cloud Comput., vol. 6, no. 3, pp. 760–770, Third Quar-
ter 2016.

[39] N. Eshraghi and B. Liang, “Joint offloading decision and resource
allocation with uncertain task computing requirement,” in Proc.
IEEE Conf. Comput. Commun., 2019, pp. 1414–1422.

[40] M. Hu, L. Zhuang, D. Wu, Y. Zhou, X. Chen, and L. Xiao,
“Learning driven computation offloading for asymmetrically
informed edge computing,” IEEE Trans. Parallel Distrib. Syst., vol.
30, no. 8, pp. 1802–1815, Aug. 2019.

[41] S. Nickel, C. Steinhardt, H. Schlenker, W. Burkart, and M. Reuter-
Oppermann , “IBM ILOG CPLEX optimization studio,” in Ange-
wandte Optimierung mit IBM ILOG CPLEX Optimization Studio. Ber-
lin, Germany: Springer, 2021, pp. 9–23.

[42] Google, “Google cluster,” 2020. [Online]. Available: https://code.
google.com/p/googleclusterdata/

Zhi Ma received the BS degree from Nanjing Uni-
versity, China, in 2017, where he is currently work-
ing toward the PhD degree under the supervision
of Prof. Sheng Zhang. His research interests
include wireles charging and edge computing.

Sheng Zhang (Member, IEEE) received the BS
and PhD degrees fromNanjing University, in 2008
and 2014, respectively. He is currently an associ-
ate professor with the Department of Computer
Science and Technology, Nanjing University. He
is also a member of the State Key Laboratory for
Novel Software Technology. His research inter-
ests include cloud computing and edge comput-
ing. To date, he has published more than 80
papers, including those appearing in IEEE Trans-
actions on Mobile Computing, IEEE/ACM Trans-

actions on Networking, IEEE Transactions on Parallel and Distributed
Systems, IEEE Transactions on Computers, MobiHoc, ICDCS, INFO-
COM, SECON, IWQoS, and ICPP. He received the Best Paper Award of
IEEE ICCCN 2020 and the Best Paper Runner-Up Award of IEEE MASS
2012. He was the recipient of 2015 ACM China Doctoral Dissertation
Nomination Award. He is a senior member of the CCF.

Zhiqi Chen is currently working toward the mas-
ter’s degree at the Department of Computer Sci-
ence and Technology, Nanjing University, China.
His research interests include NFV placement,
mobile edge computing, and optimization.

Tao Han (Member, IEEE) is currently an associate
professor in the Department of Electrical and Com-
puter Engineering at New Jersey Institute of Tech-
nology. He received the PhD degree in electrical
engineering from New Jersey Institute of Technol-
ogy (NJIT) in 2015. He was the recipient of IEEE
International Conference on Communications (ICC)
Best Paper Award 2019, IEEE Communications
Society’s Transmission, Access, and Optical Sys-
tems (TAOS) Best Paper Award 2019, Newark Col-
lege of Engineering Outstanding Dissertation Award

2016, NJIT Hashimoto Prize 2015, and New Jersey Inventors Hall of Fame
Graduate Student Award 2014. He serves as an associate editor of IEEE
Communications Letters and TPC member for numerous IEEE conferences.
His research interest includes mobile edge networking, machine learning,
mobile X reality, 5G system, Internet of Things, and smart grid.

Zhuzhong Qian (Member, IEEE) received the
PhD degree in computer science, in 2007. He is a
professor with the Department of Computer Sci-
ence and Technology, Nanjing University, P. R.
China. His research interests include cloud com-
puting, distributed systems, and pervasive com-
puting. He is the chief member of several national
research projects on cloud computing and edge
computing.

Mingjun Xiao (Member, IEEE) received the
PhD degree from the University of Science and
Technology of China, in 2004. He is currently a
professor with the School of Computer Science
and Technology, University of Science and
Technology of China (USTC). His research
interests include mobile crowdsensing, block-
chain, edge computing, mobile social networks,
vehicular ad hoc networks, auction theory, data
security and privacy. He has published more
than 90 papers in referred journals and confer-

ences, including the IEEE Transactions on Mobile Computing, IEEE
Transactions on Networking, IEEE Transactions on Parallel and Dis-
tributed Systems, IEEE Transactions on Computers, IEEE Transac-
tions on Knowledge and Data Engineering, IEEE Transactions on
Services Computing, INFOCOM, ICDE, ICNP, ICDCS, etc. He served
as the TPC member of many top conferences, including INFO-
COM18-21, IJCAI 21, DASFAA20, ICDCS19, etc. He is on the
reviewer board of several top journals such as IEEE Transactions on
Mobile Computing, IEEE Transactions on Networking, IEEE Transac-
tions on Parallel and Distributed Systems, IEEE Transactions on
Services Computing, IEEE Transactions on Vehicular Technology,
IEEE Transactions on Cloud Computing, etc.

MA ET AL.: TOWARDS REVENUE-DRIVEN MULTI-USER ONLINE TASK OFFLOADING IN EDGE COMPUTING 1197

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TCC.2019.2937928
https://code.google.com/p/googleclusterdata/
https://code.google.com/p/googleclusterdata/


Ning Chen received the BS degree from the
Chongqing University of Post and Telecommuni-
cation, in 2018. He is currently working toward
the PhD degree at the Department of Computer
Science and Technology, Nanjing University,
under the supervision of Prof. Sheng Zhang. His
research interests including edge computing,
deep reinforcement learning, and video stream-
ing. His publications include those appearing
in the IEEE Transactions on Parallel and Distrib-
uted Systems, SECON, ICPADS and Elsevier
Computer Network.

Jie Wu (Fellow, IEEE) is currently the director of
the Center for Networked Computing and the
Laura H. Carnell professor with Temple Univer-
sity. He also serves as the director of International
Affairs at College of Science and Technology.
He served as chair of Department of Computer
and Information Sciences from the summer of
2009 to the summer of 2016 and associate
vice provost for International Affairs from the fall
of 2015 to the summer of 2017. Prior to joining
Temple University, he was a program director with

the National Science Foundation and was a distinguished professor with
Florida Atlantic University. His research interests include mobile comput-
ing and wireless networks, routing protocols, cloud and green computing,
network trust and security, and social network applications. He regularly
publishes in scholarly journals, conference proceedings, and books. He
serves on several editorial boards, including the IEEE Transactions on
Mobile Computing, IEEE Transactions on Service Computing, Journal of
Parallel and Distributed Computing, and Journal of Computer Science
and Technology. He was general co-chair for IEEE MASS 2006, IEEE
IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc 2014, ICPP 2016, and
IEEE CNS 2016, as well as program co-chair for IEEE INFOCOM 2011
and CCF CNCC 2013. He was an IEEE Computer Society distinguished
visitor, ACM Distinguished Speaker, and chair for IEEE Technical Com-
mittee on Distributed Processing (TCDP). He is a CCF Distinguished
speaker. He was the recipient of 2011 China Computer Federation (CCF)
Overseas Outstanding Achievement Award.

Sanglu Lu (Member, IEEE) received the BS, MS,
and PhD degrees in computer science from Nanj-
ing University, in 1992, 1995, and 1997, respec-
tively. She is currently a professor with the
Department of Computer Science and Technol-
ogy, State Key Laboratory for Novel Software
Technology. Her research interests include dis-
tributed computing, wireless networks, and per-
vasive computing. She has published more than
80 papers in referred journals and conferences in
the above areas.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1198 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:17:03 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


